Analyzing sequentially randomized trials based on causal effect models for realistic individualized treatment rules.
نویسندگان
چکیده
In this paper, we argue that causal effect models for realistic individualized treatment rules represent an attractive tool for analyzing sequentially randomized trials. Unlike a number of methods proposed previously, this approach does not rely on the assumption that intermediate outcomes are discrete or that models for the distributions of these intermediate outcomes given the observed past are correctly specified. In addition, it generalizes the methodology for performing pairwise comparisons between individualized treatment rules by allowing the user to posit a marginal structural model for all candidate treatment rules simultaneously. This is particularly useful if the number of such rules is large, in which case an approach based on individual pairwise comparisons would be likely to suffer from too much sampling variability to provide an informative answer. In addition, such causal effect models represent an interesting alternative to methods previously proposed for selecting an optimal individualized treatment rule in that they immediately give the user a sense of how the optimal outcome is estimated to change in the neighborhood of the identified optimum. We discuss an inverse-probability-of-treatment-weighted (IPTW) estimator for these causal effect models, which is straightforward to implement using standard statistical software, and develop an approach for constructing valid asymptotic confidence intervals based on the influence curve of this estimator. The methodology is illustrated in two simulation studies that are intended to mimic an HIV/AIDS trial.
منابع مشابه
Targeted Maximum Likelihood Based Causal Inference: Part II
In this article, we provide a template for the practical implementation of the targeted maximum likelihood estimator for analyzing causal effects of multiple time point interventions, for which the methodology was developed and presented in Part I. In addition, the application of this template is demonstrated in two important estimation problems: estimation of the effect of individualized treat...
متن کاملCausal effect models for realistic individualized treatment and intention to treat rules.
Marginal structural models (MSM) are an important class of models in causal inference. Given a longitudinal data structure observed on a sample of n independent and identically distributed experimental units, MSM model the counterfactual outcome distribution corresponding with a static treatment intervention, conditional on user-supplied baseline covariates. Identification of a static treatment...
متن کاملA practical illustration of the importance of realistic individualized treatment rules in causal inference.
The effect of vigorous physical activity on mortality in the elderly is difficult to estimate using conventional approaches to causal inference that define this effect by comparing the mortality risks corresponding to hypothetical scenarios in which all subjects in the target population engage in a given level of vigorous physical activity. A causal effect defined on the basis of such a static ...
متن کاملBayesian Adaptive Methods for Clinical Trials of Targeted Agents
This chapter presents general Bayesian concepts and some specific designs for human clinical trials of targeted agents. The designs employ decision rules that use each patient’s protein or gene expression biomarkers, and possibly conventional prognostic variables, to choose an individualized treatment regime that may include one or several targeted agents. The Bayesian rules are sequentially ad...
متن کاملIndividualized treatment rules: generating candidate clinical trials.
Individualized treatment rules, or rules for altering treatments over time in response to changes in individual covariates, are of primary importance in the practice of clinical medicine. Several statistical methods aim to estimate the rule, termed an optimal dynamic treatment regime, which will result in the best expected outcome in a population. In this article, we discuss estimation of an al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 27 19 شماره
صفحات -
تاریخ انتشار 2008